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Hang Onto Yourself
Dynamic hash tables and how to resolve collisions...
by Julian Bucknall

In the last instalment (February
1998) we finished off with a class

that encapsulated a hash table.
This hash table used linear probing
to resolve collisions. One of the
problems with this implementa-
tion was that the hash table was a
static size: it could only accept so
many strings. Another problem
was that the efficiency of linear
probing started to degenerate
badly after the table was about
two-thirds full. This time around
we’ll be investigating hash tables
that can dynamically extend or
shrink according to the number of
strings stored in them and we’ll be
looking at other collision
resolution techniques.

I would advise you to review the
material from the previous article
before we move on.

Panic In Detroit
Actually, there was one thing I
forgot to make really clear last
time. Hash tables are great for find-
ing a particular string and its asso-
ciated data quickly. Providing you
have a linear probe hash table that
is less than two-thirds full, it takes
maybe one or two accesses to get
the string you want. It is hopeless at
retrieving strings in alphabetic
order: it just cannot be done. If you
need to be able to access the
strings in any other order than the
order in which they’re stored then
use another data structure (a
TStringList being the obvious
choice). But if you want to either
find a particular string in the table
or show that it’s not there, a hash
table is the best.

Jump They Say
Well, let’s make the hash table
we’ve already written dynamic in
size, or extensible. It’s pretty easy
really. When we insert a new string,
we add it as before and then check
to see if the table is now more than
two-thirds full. If it is, we calculate

a new size of the table that is
roughly double the existing size
(we have to make sure that the size
is a prime, remember). We allocate
a new table of this size. We then
transfer every single string and
pointer combination from the old
table to the new one and then free
the old table. The hash for each
string has to be calculated accord-
ing to the new number of strings,
obviously. We are left with a table
that is double the size of the origi-
nal and roughly one-third full.

What about deleting strings?
Well we could shrink the table once
the table is less than one-third full,
for example, but personally I don’t
think it’s particularly worth it. Con-
sider what happens if we insert and
delete elements right around the
boundary: we’d be continually flip-
ping from a large table to a small
one and back again. Also hash
tables work best if there is only one
access to get the correct element,
and with small numbers of ele-
ments there is a greater probability
of that.

I won’t show you the code that
extends the hash table here, it’s
really pretty obvious and if you
want to you can look at the
ThtlHashTableLinear.htlGrowTable
method in the HASHLINP.PAS file on
this month’s diskette. This file con-
tains the final, extensible, version
of the linear probe hash table class
which we introduced last time. It
also supports table shrinking if the
number of elements falls below
one-sixth of the total number.

Before considering other colli-
sion resolution methods, let’s
review a frequently used variant of
linear probing. This variant is
called double hashing. With
double hashing, instead of moving
on by one element when we get a
collision, we hash the string with
another completely different hash
function and then advance a
number of elements given by that

hash value. Generally, strings that
hash equal with the first function
won’t with the second. Hence the
elements with the same hash value
will no longer be clumped together
as with linear probing, they will be
well separated. The separation is
determined by another hash func-
tion, independent from the first. I
leave it as an easy exercise for the
reader to modify the linear probe
hash table class to use double
hashing instead.

Space Oddity
We have been blithely assuming so
far that each element is only one
string and its associated data.
What happens if each element is a
fixed array of strings instead, say
10 items long? What happens to
the efficiency of the hash table
then? Why would we do such a
thing anyway?

Elements that can store several
strings are called buckets. Let’s
answer the last question first and
provide a signpost to where these
articles are leading. The reasoning
behind buckets is that you can
retrieve a bucket of several strings
in one access. For in-memory hash
tables that’s not particularly
important. For hash tables that are
on disk, it’s of vital importance.
This is where we are leading: we’re
going to be building a hash
indexed record manager. Eat your
heart out, Steve Troxell!

OK, back to our hypothetical
array buckets. Suppose we have a
linear probe hash table that has 30
elements filled of a possible 50, ie
60% full. The average search path
is going to be a little less than 2
accesses as we discussed last
time. Let us now assume that we
have a 25-element hash table
where each element is a 2-item
array bucket and fill it with the
same 30 strings. What’s hap-
pened? Well, it’s still 60% full,
that’s for sure. What’s the average
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search path now? Without a lot
more mathematics than we really
need to go into, we cannot
calculate it from first principles
(indeed, I deliberately skirted the
mathematics last time). So we shall
calculate it by simulation. I wrote a
variant of the linear probe hash
table that had buckets holding two
items and the answer was 1.18
seeks per record, compared with
1.82 seeks for the simple case. In
fact it was even better than this: my
bucketed hash table had 23 ele-
ments whereas the simple case
had 53, less than half the elements.
Pretty good, and that was just with
2 item buckets.

Another way of bucketing is to
use a linked list. Every string that
hashes to a particular value gets
inserted into a linked list at that
value. The hash table then
becomes an array of linked lists,
each linked list containing nodes
that have a string and its data, and
each of those linked lists’ strings
hashing to the same value. This is
of benefit for memory hash tables,
since it is very easy to extend this
data structure to contain more and
more strings without growing the
hash table itself. As you can imag-
ine there comes a point when there
are so many strings in the struc-
ture that too much time is being
spent moving up and down the
linked lists. At that point it’s proba-
bly better to grow the hash table
and shorten the linked lists. The
difficulty is knowing when to do
this and grow the table. I know of
no research into this area (I
haven’t really looked though) and
have not had time to experiment
myself. By the way, forgive the

gratuitous plug, but this is the
method used by the string diction-
ary class in TurboPower’s Sys-
Tools product. This particular
hash table implementation has a
most simple efficiency improve-
ment: when a string is accessed it is
moved to the front of its linked list.
This means that the most ‘popular’
strings are close together and you
don’t generally have to go search-
ing though long linked lists.

In fact, that last thought brings
up another point. If you know, by
experiment, by collecting statis-
tics, or whatever, that certain
strings are searched for in your
hash table more often than others,
then it is always better to insert
them first. That way, those popular
strings will be found with one seek
and the less popular strings will
have to be found with more than
one seek. Overall, however, the
effect is that the efficiency of the
table is much greater. For example,
if I was writing a program that
maintained statistics on how many
messages each TurboPower
employee posted on our news-
groups, and I was using a hash
table to index the names of the
employees, I would make sure that
our Tech Support Supervisor,
Brian Warner, was the first name to
hash and insert into the table. He
posts far more messages than

type
TMyRecord = packed record
Name      : string[99]
Data      : TMyData;
IsDeleted : boolean;

end;
TMyFile = file of TMyRecord;

var
MyRecord : TMyRecord;
MyFile   : TMyFile;

➤ Listing 1

anyone else on our newsgroups (I
was third if I correctly remember
some recent statistics) and so my
theoretical program would be
accessing his record more often
than anyone else’s.

Of course, generally you don’t
know the relative importance of
each string that you are hashing.
I’m thinking here especially of
compilers that insert identifiers
from program source code into a
hash table. I suppose that Borland
could do some statistics on what
identifier names Delphi program-
mers tend to use (I always seem to
use a loop counter called i for
example, and people use Insert,
Clear, Delete, Remove and Count a
lot) and they could pre-seed a hash
table with these strings in the
setup phase of compiling a pro-
gram. This might slightly improve
Delphi’s compile speed.

Bang Bang
Well, I think we’ve taken in
memory hash tables as far as we
need to at present. Let’s now

➤ Listing 2

procedure GetMyRecord(const aMyFile : TMyFile;
aRecNo : integer; var aMyRec : TMyRecord);

begin
System.Seek(aMyFile, aRecNo);
System.Read(aMyFile, aMyRec);

end;
...
GetMyRecord(MyFile, 0, MyRecord);  {get the first record}
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consider hash tables on disk. For
our initial discussion, let us
assume that each string and its
data are captured in a fixed length
record in a data file and hence that
file can be considered as a file of
that record type (Listing 1). Pretty
simple, so far, but note that each
record has a flag that tells you
whether the record is deleted or
not. Each of the records in the file
will have a record number, with the
first record being record 0 and the
second record 1 and so on. To
access a given record we could
write the code shown in Listing 2.

Again, nothing too contentious,
apart from the missing error han-
dling, I suppose. Similarly we could
write routines that wrote a record
to a particular record number,
added a new record onto the end of
the file, opened and closed the file
and so on. We’ll touch on deleting a
record in a minute.

So, fairly simply and quickly, we
have come up with a set of routines
for managing a data file of records.
Now we really need to index them,
but instead of writing and using a
B-tree or something similar, we
recognize that we will just be
accessing the records in the
manner of a hash table. In other
words we’ll be reading a record
based on a key (the Name field) or
we’ll be testing to see if the record
with that key is there. We won’t be
attempting to read through the
records in alphabetic order by
Name, for example. And it must be
fast, one seek or two to get a
record, so that lets out the “let’s
read all the records in sequence
looking for the one we want”
answer.

So, fairly obviously (especially if
you have been following this as we
go along!), we need a hash table of
some sort. For simplicity’s sake,
let’s assume to begin with what we
shall be using: a static linear probe
hash table, thus the hash table is a
certain number of elements large
(prime, remember). In our in
memory hash table, the elements
of the hash table themselves con-
tained the strings and their data,
but we have no need of this in our
file-based case since the strings
and data are in our records in our
data file. So what should the hash
table elements contain? Why the
record number of course! The hash
table can be written quickly to
another file, called the index file,
and read from it into memory
equally as easily.

Let’s see how far we get with this
definition just by talking our way
through it. We want to insert Smith
and his data into our data/index
files. We create another record in
the data file and retain its record
number. We then hash Smith to get
42. We look at element 42 in the
hash table and see that it’s empty.
But, hang on a minute, how do we
know it’s empty? We don’t: each
element is defined to be a record
number and we haven’t got any
flags to say empty or in use or
deleted. OK, here’s Plan A: let’s
arbitrarily say that record number
-1 (which cannot exist in the data
file) means ‘empty’ and record
number -2 means ‘deleted’. This
does mean that when the hash
table is created (and initially writ-
ten to disk), all elements must be
set to -1. Moving on, we can see
that element 42 is empty and so we

write Smith’s record number (ie 0
as he’s the first) in there. In short
order, we add Jones (who also
hashes to 42) and Rhys (who also
hashes to 42). The hash table then
looks like this around this area:

Element 41: -1 <empty>

Element 42: record number 0 (Smith)

Element 43: record number 1 (Jones)

Element 44: record number 2 (Rhys)

Element 45: -1 <empty>

Let’s now find the record for Rhys.
We hash it to 42. This element has
0 as the record number. We
retrieve that record and look at its
Name field; it’s not the right one.
Back to the hash table and we look
at element 43. This points to
record number 1 which, after
we’ve read it, is also wrong. Back
again to the hash table, element 44
says record 2 and once we’ve read
it we see that it’s the correct one.
As you can see this all translates
pretty easily from what we had
before in the in-memory case. Let’s
say we delete Jones. We find out
from element 43 that it’s record
number 1. We mark the record as
deleted (there’s a flag for that,
remember) and we mark element
43 in the hash table as record
number -2. The hash table then
looks like this:

Element 41: -1 <empty>

Element 42: record number 0 (Smith)

Element 43: -2 <deleted>

Element 44: record number 2 (Rhys)

Element 45: -1 <empty>

All pretty familiar. If we now
need to add Jones again, we create
another record (record 3 this
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time) and then the new record
number gets set in element 43 in
the manner to which we’ve all
become accustomed (and which
we talked about at length in the last
article).

So, it’s all wrapped up then?
Nope, ‘fraid not, as I’m sure this
pretty simple walkthrough has
shown, by revealing the flaw you
have already spotted. Record
number 1 has not been reused, it’s
just lying there taking up disk
space. If we do a lot of record dele-
tions then we are going to get a lot
of deleted records in our data file
that would never get reused.
Unless, of course, we took the time
and trouble to read through the
entire data file looking for deleted
records to reuse when we inserted
a new one. And that is exactly why
we don’t do it, it would take forever
and a day and defeats the purpose
of the hash table in the first place.

So although Plan A has the bene-
fit of simplicity, for the type of
record manager we want to write,
it’s not very good. Plan B then!

Ricochet, Plan B
To be honest, Plan B isn’t all that
different. Here it is: each element in
the hash table has a record
number and a flag that details
whether the element is empty, in
use, or deleted. A moment’s
thought would show that this
neatly solves the deleted record
problem: when we delete a record
we mark its element in the hash
table as deleted, but we leave the
record number in place. Our hash
table then tracks our deleted
records for us! Wonderful stuff.
Back to the reinsertion of Jones,
the operation we were trying to do
before that revealed the problem.
The hash table looks like this:

Element 41: <empty>

Element 42: <in use>  record 0 (Smith)

Element 43: <deleted> record 1

Element 44: <in use>  record 2 (Rhys)

Element 45: <empty>

As you can see, walking through
the insertion of Jones (which
hashes to 42, remember) using the
methodology we discussed in the
last article, we not only reuse

element 43 for Jones, but we also
reuse record number 1. Marvelous.

The only problem with this
scenario is that it uses a total of 5
bytes per element. Which doesn’t
seem like much to worry about, but
when you factor in the fact that
Pentiums like variables aligned on
4-byte boundaries (it’s much more
speed efficient) then you see that
each element would be better as 8
bytes (with 3 wasted for our goal of
speed). Is there a Plan C, where we
don’t use 8 bytes per element?
Well, how does 2 bits per element
grab you? (Yes, that’s bits, not
bytes.) A 32-fold space improve-
ment is not to be sneezed at.

Shining Star, Plan C
Imagine that you have been using
Plan B for a while with a particular
file, adding and deleting many dif-
ferent records (not that I recom-
mend doing this to a hash table
with no buckets, by the way:
why?). What size is the data file
going to be at this stage? Pretty
obviously, it will have the same
number of records as there are ele-
ments in the hash table. Some of
these records will be deleted, yes,
but there probably won’t be any
empty slots in the hash table any
more, they’ll either be in use or
deleted, and in either case there
will be a record number associated
with each hash table element.

So what? Well, if there are as
many records as hash table ele-
ments, then why bother with
record numbers in the hash table
at all? Force element 0 of the hash
table to be record number 0 in the
data file (or vice versa). Then each
element of the hash table just has
to contain a flag for whether the
record is empty/in use/deleted.
What that also means in practice is
that you have to write blank
records to the data file when you
create the hash table. So if you
create the data/index files to con-
tain a maximum of 509 records, not
only do you have to create a 509
element hash table, you also have
to write out 509 blank records to
the data file.

To insert a record in this situa-
tion, you move operations around
a little bit. Let’s insert Smith, Jones

and Rhys again, in that order. Hash
Smith to 42, get element 42 which
indicates that the record is empty.
Write Smith to record number 42,
mark the table element as ‘in use’.
Now Jones: hash to 42, element 42
says ‘in use’, but retrieving the
record shows that it’s the wrong
one; element 43 is empty so you
write Jones to record number 43
and mark the table element as ‘in
use’. Similarly for Rhys.

And remember throughout that
all the elements in the hash table
just contain a flag detailing
whether the associated record is
empty, in use or deleted. That’s
three possible values, and two bits
is ample for that (you can store
four possible values in two bits).
So the hash table can be mightily
compressed to four elements per
byte. A 509 element hash table
could be compressed to 128 bytes
using this scheme.

Of course you don’t have to
write out all those blank records
either if you don’t want to. Win32
operating systems allow you to
seek beyond the end of a file and
write data there: it’ll do it quite
happily and fill the intervening
region with whatever garbage
bytes happened to be on disk. If
you don’t want this to happen,
then you will have to write out the
intervening blank records. Just
don’t try doing this with Windows
3.x!

Oh, and the answer to my
quickie question above is that, in
the scenario described, there
would be no empty elements in the
hash table. Remember that to
insert a new record you would
hash the string key, and then read
through the elements in the hash
table (and reading records off disk
to compare strings) looking for
either the key you want or the first
empty slot. Since there are no
empty slots, it would mean that
every single ‘in use’ record would
have to be examined every single
time you wanted to insert a record.
In fact, this is a real problem with
linear probing in general: if the
data within the hash table is highly
dynamic, it makes sense to peri-
odically create a new hash table
and copy the data over.
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Miracle Goodnight
Are we done? Gimme a break.
Another speed improvement we
discussed earlier was buckets. In a
disk environment, buckets are a
good thing. They are even better if
the bucket size is equal to the clus-
ter size of your disk, for example
4Kb, 8Kb, 16Kb or 32Kb.

Recall that when you read from a
file your disk driver will in fact read
an entire cluster at once and just
parcel out the bit you want. Since
the driver is going to read a cluster
anyway, let’s pack as many records
as we can into a cluster and make a
cluster a bucket. This gives us
more room in the hash table and
improves on the number of seeks
to find a record. We can easily read
a cluster, sorry, bucket, from disk
and search through the bucket to
see whether the record we want is
there. It does make our data file a
file of buckets rather than a file of
records, but that’s a small price to
pay for improved access.

The hash table index we have
just been theorizing about is static:
its size is determined by whatever
number of elements it was created
with. We need to make that step
further and create a dynamic hash
table index on disk.

A moment’s thought would show
that Plan C above would be imprac-
ticable. Every time we grew the
hash table index we would have to
create a new data file, since the
number of the hash table element
would also be the record number
and elements would be rear-
ranged. We’d rather not have to
rebuild the data file, just in order to
expand the index.

What to do then? We could use
Plan B and every time we grew the
hash index we have to completely

rewrite it. Possible, but in a shared
environment it’s less than optimal;
however, it is a minor flaw. If we
use buckets with Plan B then we’re
stuck with having to rebuild the
data file every time the hash table
index needs extending (the reason
is that most if not all of the records
in the bucket will have the same
hash value, and when we change
the hash function by expanding the
hash table the records in the buck-
ets no longer have the same hash
value as each other).

The answer is to use extensible
hashing, or linear hashing, or any
of the variants thereof. But any dis-
cussion on extensible disk hashing
would require a starter article at
least as long as this one. I’m afraid I
can’t just polish it off in a couple of
paragraphs, and so it must wait
until another time. If you want to
know about extensible hashing, by
all means let either myself or our
Editor, Chris Frizelle, know and
we’ll cover it in a future issue.

Outside
However, all is not quite over yet.
The code on the diskette is an
implementation of a hash indexed
record manager that uses a variant
of Plan B with 4Kb buckets to store
records. I’ve even made it an exten-
sible one as well, although to
extend such a table essentially

requires the data file to be copied
over into a new one. So, try and
choose your hash table size prop-
erly so that no extension is
required.

[Editor’s note: As usual, Julian is
being very modest about his accom-
plishments! I strongly recommend
you take a look at the hash indexed
record manager on the disk. It’s
ideal for many of those occasions
where you thought “Rats, I suppose
I’ll have to use some database
engine or other now for this little bit
of my application” and began to
despair of all the extra hassle and
all that extra code being linked into
your app, or those massive DLLs...]
As usual with freeware code from

my articles, you are free to use it in
your own programs, but I retain all
copyright in it.

Julian Bucknall works for Turbo-
Power Software. He acts in his
spare time (a Cracked Actor? – a
lad insane) and listens to CDs
whilst programming. He can be
reached by e-mail at julianb@tur-
bopower.com or on CompuServe
at 100116,1572. The code that ac-
companies this article is freeware
and can be used as-is in your own
applications.
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